M. TECH IN EMBEDDED SYSTEMS. EFFECTIVE FROM ACADEMIC YEAR 2017- 18 ADMITTED BATCH

COURSE STRUCTURE AND SYLLABUS

I Semester

Category	Course Title	Int.	Ext.	L	Т	Ρ	С
		marks	marks				
PC-1	Embedded System Design	25	75	4	0	0	4
PC-2	ARM Processor Architectures	25	75	4	0	0	4
PC-3	Real Time Operating Systems	25	75	4	0	0	4
PE-1	E-1 Advanced Computer Architecture 25		75	3	0	0	3
	CMOS VLSI Design						
	CPLD and FPGA Architectures and						
	Applications						
PE-2	Digital System Design	25	75	3	0	0	3
	Embedded C						
	TCP / IP Internetworking						
OE-1	*Open Elective – I	25	75	3	0	0	3
Laboratory I	Embedded Systems Laboratory	25	75	0	0	3	2
Seminar I	Seminar	100	0	0	0	3	2
	Total	275	525	21	0	6	25

II Semester

Category	Course Title	Int. marks	Ext. marks	L	Т	Ρ	С
PC-4	Embedded Computing	25	75	4	0	0	4
PC-5	System On Chip Architecture	25	75	4	0	0	4
PC-6	Sensors and Actuators	25	75	4	0	0	4
PE-3	-3 Design for Testability		75	3	0	0	3
	Wireless Communication and Networks						
	Scripting Languages						
PE4	Advanced Digital Signal Processors	25	75	3	0	0	3
	Network Security and Cryptography						
	Hardware Software Co-Design						
OE-2	*Open Elective – II	25	75	3	0	0	3
Laboratory II	Advanced Embedded Systems Laboratory	25	75	0	0	3	2
Seminar II	Seminar	100	0	0	0	3	2
	Total	275	525	21	0	6	25

III Semester

Course Title	Int. marks	Ext. marks	L	т	Р	С
Technical Paper Writing	100	0	0	3	0	2
Comprehensive Viva-Voce	0	100	0	0	0	4
Project work Review II	100	0	0	0	22	8
Total	200	100	0	3	22	14

IV Semester

Course Title	Int. marks	Ext. marks	L	Т	Ρ	С
Project work Review III	100	0	0	0	24	8
Project Evaluation (Viva-Voce)	0	100	0	0	0	16
Total	100	100	0	0	24	24

*Open Elective subjects must be chosen from the list of open electives offered by OTHER departments.

For Project review I, please refer 7.10 in R17 Academic Regulations.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

EMBEDDED SYSTEM DESIGN (PC-1)

UNIT -I

Introduction to Embedded Systems: Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT -II

Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT -III

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT -IV

RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.

UNIT -V

Task Communication: Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

TEXT BOOKS:

1. Shibu K.V, "Introduction to Embedded Systems", McGraw Hill.

REFERENCE BOOKS:

- 1. Raj Kamal, "Embedded Systems", TMH.
- 2. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley.
- 3. Lyla, "Embedded Systems", Pearson, 2013
- 4. David E. Simon, "An Embedded Software Primer", Pearson Education.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

ARM PROCESSOR ARCHITECTURES (PC-2)

UNIT – I

ARM Architecture and Instruction Set: ARM Design Philosophy, Registers, PSR, Pipeline, Interrupts and Vector Table, Architecture Revision, ARM Processor Families. Instruction Set: Data Processing Instructions, Branch, Load, Store Instructions, PSR Instructions, Conditional Instructions.

UNIT – II

ARM Programming Model: Thumb Instruction Set: Register Usage, Other Branch Instructions, Data Processing Instructions, Single-Register and Multi Register Load-Store Instructions, Stack, Interrupts, Software Interrupt Instructions, Exception handling

UNIT – III

ARM Programming using High Level Language: Simple C Programs using Function Calls, Pointers, Structures, Integer and Floating Point Arithmetic, Assembly Code using Instruction Scheduling, Register Allocation, Conditional Execution and Loops.

UNIT – IV

Memory Management: Cache Architecture, Polices, Flushing and Caches, MMU, Page Tables, Translation, Access Permissions, Content Switch.

UNIT – V

Integer and Floating Point Arithmetic on ARM: Double precision Integer Multiplication, Division, Square roots, Endian Reversal and Bit Operations, Random Number Generation, DSP on ARM – FIR filters, IIR filters.

TEXT BOOKS:

1. Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM Systems Developer's Guides- Designing & Optimizing System Software", 2008, Elsevier.

REFERENCE BOOKS:

 Jonathan W. Valvano – Brookes / Cole, "Embedded Microcomputer Systems, Real Time Interfacing", 1999, Thomas Learning.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

REAL TIME OPERATING SYSTEMS (PC-3)

UNIT – I

Introduction: Introduction to UNIX/LINUX, Overview of Commands, File I/O,(open, create, close, lseek, read, write), Process Control (fork, vfork, exit, wait, waitpid, exec).

UNIT - II

Real Time Operating Systems: Brief History of OS, Defining RTOS, The Scheduler, Objects, Services, Characteristics of RTOS, Defining a Task, asks States and Scheduling, Task Operations, Structure, Synchronization, Communication and Concurrency.

Defining Semaphores, Operations and Use, Defining Message Queue, States, Content, Storage, Operations and Use

UNIT - III

Objects, Services and I/O: Pipes, Event Registers, Signals, Other Building Blocks, Component Configuration, Basic I/O Concepts, I/O Subsystem

UNIT - IV

Exceptions, Interrupts and Timers: Exceptions, Interrupts, Applications, Processing of Exceptions and Spurious Interrupts, Real Time Clocks, Programmable Timers, Timer Interrupt Service Routines (ISR), Soft Timers, Operations.

UNIT - V

Case Studies of RTOS: RT Linux, MicroC/OS-II, Vx Works, Embedded Linux, and Tiny OS.

TEXT BOOKS:

1. Qing Li, "Real Time Concepts for Embedded Systems", Elsevier, 2011

REFERENCE BOOKS:

- 1. Rajkamal, "Embedded Systems- Architecture, Programming, and Design", 2007, TMH.
- 2. W. Richard Stevens, Stephan A. Rago, "Advanced UNIX Programming", 2006, 2nd Edition, Pearson.
- 3. Dr. Craig Hollabaugh, "Embedded Linux: Hardware, Software and Interfacing", 2008, 1st Edition, Pearson.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

ADVANCED COMPUTER ARCHITECTURE (PE-1)

UNIT- I

Fundamentals of Computer Design: Fundamentals of Computer design, Changing faces of computing and task of computer designer, Technology trends, Cost price and their trends, measuring and reporting performance, quantitative principles of computer design, Amdahl's law.

Instruction set principles and examples- Introduction, classifying instruction set- memory addressingtype and size of operands, operations in the instruction set.

UNIT – II

Pipelines: Introduction ,basic RISC instruction set ,Simple implementation of RISC instruction set, Classic five stage pipe line for RISC processor, Basic performance issues in pipelining , Pipeline hazards, Reducing pipeline branch penalties.

Memory Hierarchy Design: Introduction, review of ABC of cache, Cache performance, Reducing cache miss penalty, Virtual memory.

UNIT - III

Instruction Level Parallelism the Hardware Approach: Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach, Branch prediction, high performance instruction delivery- hardware based speculation.

ILP Software Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues -Hardware verses Software.

UNIT – IV

Multi Processors and Thread Level Parallelism: Multi Processors and Thread level Parallelism-Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared – memory architecture, Synchronization.

UNIT – V

Inter Connection and Networks: Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters. Intel Architecture: Intel IA- 64 ILP in embedded and mobile markets Fallacies and pit falls

TEXT BOOKS:

1. John L. Hennessy, David A. Patterson, "Computer Architecture: A Quantitative Approach", 3rd Edition, An Imprint of Elsevier.

REFERENCE BOOKS:

- 1. John P. Shen and Miikko H. Lipasti, "Modern Processor Design : Fundamentals of Super Scalar Processors", 2002, Beta Edition, McGrawHill
- 2. Kai Hwang, Faye A.Brigs., "Computer Architecture, and Parallel Processing", McGraw Hill.,
- 3. Dezso Sima, Terence Fountain, Peter Kacsuk, "Advanced Computer Architecture A Design Space Approach", Pearson Education.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

CMOS VLSI DESIGN (PE-1)

UNIT-I

MOS Transistor: Introduction, Ideal I-V Characteristics, C-V Characteristics, Non ideal I-V Effects, DC Transfer Characteristics.

CMOS Process Technology: CMOS Technologies, Layout Design Rules, CMOS Process Enhancements, Technology related CAD Issues.

UNIT-II

Circuit Characterization: Delay Estimation, Logical effort and Transistor Sizing, Power Dissipation, Interconnect, Design Margin, Reliability, Scaling.

UNIT-III

Combinational and Sequential Circuit Design: Circuit Families, More circuit families, Low power Logic Design, Comparison of Circuit Families, Sequencing Static Circuits, Circuit Design of Latches and Flip-Flops, Static Sequencing Element Methodology, Sequencing Dynamic Circuits, Synchronizers.

UNIT-IV

Datapath Subsystems: Addition, Subtraction, Comparators, Counters, Boolean Logical Operations, Coding, Shifters, Multiplication, Division.

Array Subsystems: SRAM, DRAM, Read-only Memory, Serial Access Memories, Content addressable Memory, PLAs, Array Yield, Reliability and Self-Test.

UNIT-V

Design Methodology and Tools: Design Methodology, Design Flows, Design Economics, Data Sheets and Documentation, CMOS Physical Design Styles, Interchange Formats. **Special Purpose Subsystem:** Packaging.

TEXTBOOKS:

1. Neil Weste, David Harris, Ayan Banerjee, "CMOS VLSI DESIGN", 3rd Edition, Pearson.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

CPLD AND FPGA ARCHITECTURES AND APPLICATIONS (PE-1)

UNIT-I

Introduction to Programmable Logic Devices: Introduction, Simple Programmable Logic Devices – Read Only Memories, Programmable Logic Arrays, Programmable Array Logic, Programmable Logic Devices/Generic Array Logic; Complex Programmable Logic Devices – Architecture of Xilinx Cool Runner XCR3064XL CPLD, CPLD Implementation of a Parallel Adder with Accumulation.

UNIT-II

Field Programmable Gate Arrays: Organization of FPGAs, FPGA Programming Technologies, Programmable Logic Block Architectures, Programmable Interconnects, Programmable I/O blocks in FPGAs, Dedicated Specialized Components of FPGAs, Applications of FPGAs.

UNIT -III

SRAM Programmable FPGAs: Introduction, Programming Technology, Device Architecture, The Xilinx XC2000, XC3000 and XC4000 Architectures.

UNIT -IV

Anti-Fuse Programmed FPGAs: Introduction, Programming Technology, Device Architecture, The Actel ACT1, ACT2 and ACT3 Architectures.

UNIT -V

Design Applications: General Design Issues, Counter Examples, A Fast Video Controller, A Position Tracker for a Robot Manipulator, A Fast DMA Controller, Designing Counters with ACT devices, Designing Adders and Accumulators with the ACT Architecture.

TEXT BOOKS:

- 1. Stephen M. Trimberger, "Field Programmable Gate Array Technology", Springer International Edition.
- 2. Charles H. Roth Jr, LizyKurian John, "Digital Systems Design", Cengage Learning.

REFERENCE BOOKS:

- 1. John V. Oldfield, Richard C. Dorf, "Field Programmable Gate Arrays", Wiley India.
- 2. Pak K. Chan/Samiha Mourad, "Digital Design Using Field Programmable Gate Arrays", Pearson Low Price Edition.
- 3. Ian Grout, "Digital Systems Design with FPGAs and CPLDs", Elsevier, Newnes.
- 4. Wayne Wolf, "FPGA based System Design", Prentice Hall Modern Semiconductor Design Series.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

DIGITAL SYSTEM DESIGN (PE-2)

UNIT -I

Minimization and Transformation of Sequential Machines: The Finite State Model – Capabilities and limitations of FSM – State equivalence and machine minimization – Simplification of incompletely specified machines. Fundamental mode model – Flow table – State reduction – Minimal closed covers – Races, Cycles and Hazards.

UNIT -II

Digital Design: Digital Design Using ROMs, PALs and PLAs, BCD Adder, 32 – bit adder, State graphs for control circuits, Scoreboard and Controller, A shift and add multiplier, Array multiplier, Keypad Scanner, Binary divider.

UNIT -III

SM Charts: State machine charts, Derivation of SM Charts, Realization of SM Chart, Implementation of Binary Multiplier, dice game controller.

UNIT -IV

Fault Modeling & Test Pattern Generation: Logic Fault model – Fault detection & Redundancy-Fault equivalence and fault location –Fault dominance – Single stuck at fault model – Multiple stuck at fault models –Bridging fault model. Fault diagnosis of combinational circuits by conventional methods – Path sensitization techniques, Boolean Difference method – Kohavi algorithm – Test algorithms – D algorithm, PODEM, Random testing, Transition count testing, Signature analysis and test bridging faults.

UNIT -V

Fault Diagnosis in Sequential Circuits: Circuit Test Approach, Transition Check Approach – State identification and fault detection experiment, Machine identification, Design of fault detection experiment

TEXT BOOKS:

- 1. Charles H. Roth, "Fundamentals of Logic Design", 5th Edition, Cengage Learning.
- 2. Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman, "Digital Systems Testing and Testable Design", John Wiley & Sons Inc.
- 3. N. N. Biswas, "Logic Design Theory", PHI

REFERENCE BOOKS:

- 1. Z. Kohavi , "Switching and Finite Automata Theory", 2nd Edition, 2001, TMH
- 2. Morris Mano, M.D.Ciletti, "Digital Design", 4th Edition, PHI.
- 3. Samuel C. Lee , "Digital Circuits and Logic Design", PHI

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

EMBEDDED C (PE-2)

UNIT – I

Programming Embedded Systems in C: Introduction ,What is an embedded system, Which processor should you use, Which programming language should you use, Which operating system should you use, How do you develop embedded software, Conclusions.

Introducing the 8051 Microcontroller Family: Introduction, What's in a name, The external interface of the Standard 8051, Reset requirements ,Clock frequency and performance, Memory issues, I/O pins, Timers, Interrupts, Serial interface, Power consumption ,Conclusions.

UNIT – II

Reading Switches: Introduction, Basic techniques for reading from port pins, Example: Reading and writing bytes, Example: Reading and writing bits (simple version), Example: Reading and writing bits (generic version), The need for pull-up resistors, Dealing with switch bounce, Example: Reading switch inputs (basic code), Example: Counting goats, Conclusions.

UNIT – III

Adding Structure to the Code: Introduction, Object-oriented programming with C, The Project Header (MAIN.H), The Port Header (PORT.H), Example: Restructuring the 'Hello Embedded World' example, Example: Restructuring the goat-counting example, Further examples, Conclusions.

UNIT – IV

Meeting Real-Time Constraints: Introduction, Creating 'hardware delays' using Timer 0 and Timer 1, Example: Generating a precise 50 ms delay, Example: Creating a portable hardware delay, Why not use Timer 2?, The need for 'timeout' mechanisms, Creating loop timeouts, Example: Testing loop timeouts, Example: A more reliable switch interface, Creating hardware timeouts, Example: Testing a hardware timeout, Conclusions.

UNIT – V

Case Study: Intruder Alarm System: Introduction, The software architecture, Key software components used in this example, running the program, the software, Conclusions.

TEXT BOOKS:

1. Michael J. Pont, "Embedded C", 2nd Edition, Pearson Education, 2008

REFERENCE BOOKS:

1. Nigel Gardner, "PIC micro MCU C-An introduction to programming", The Microchip PIC in CCS C -

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

TCP / IP INTERNETWORKING (PE-2)

UNIT - I

Network Models: Layered Tasks, The OSI Model, Layers in OSI Model, TCP/IP Protocol suite, Addressing.

Connecting devices: Passive Hubs, Repeaters, Active Hubs, Bridges, Two Layer Switches, Routers, Three Layer Switches, Gateway, Backbone Networks.

UNIT - II

Internetworking Concepts: Principles of Internetworking, Connectionless Interconnection, Application Level Interconnection, Network Level Interconnection, Properties of the Internet, Internet Architecture, Interconnection through IP Routers

TCP, UDP & IP: TCP Services, TCP Features, Segment, A TCP Connection, Flow Control, Error Control, Congestion Control, Process to Process Communication, User Datagram, Checksum, UDP Operation, IP Datagram, Fragmentation, Options, IP Addressing: Classful Addressing, IPV6.

UNIT - III

Congestion and Quality of Service: Data Traffic, Congestion, Congestion Control, Congestion Control in TCP, Congestion Control in Frame Relay, Source Based Congestion Avoidance, DEC Bit Scheme, Quality of Service, Techniques to Improve QOS: Scheduling, Traffic Shaping, Admission Control, Resource Reservation, Integrated Services and Differentiated Services.

UNIT - IV

Queue Management: Concepts of Buffer Management, Drop Tail, Drop Front, Random Drop, Passive Buffer Management Schemes, Drawbacks of PQM, Active Queue Management: Early Random Drop, RED Algorithm.

UNIT - V

Stream Control Transmission Protocol: SCTP Services, SCTP Features, Packet Format, Flow Control, Error Control, Congestion Control.

Mobile Network Layer: Entities and Terminology, IP Packet Delivery, Agents, Addressing, Agent Discovery, Registration, Tunneling and Encapsulating, Inefficiency in Mobile IP.

Mobile Transport Layer : Classical TCP Improvements, Indirect TCP, Snooping TCP, Mobile TCP, Fast Retransmit/Fast Recovery, Transmission, Timeout Freezing, Selective Retransmission, Transaction Oriented TCP.

TEXT BOOKS:

- 1. Behrouz A Forouzan, "TCP/IP Protocol Suite", 3rd Edition, TMH.
- 2. B.A. Forouzan, "Data communication & Networking", 4th Edition, TMH.

- 1. Mahbub Hasan & Raj Jain, "High performance TCP/IP Networking", PHI -2005
- 2. Douglas. E.Comer, "Internetworking with TCP/IP ", Volume I PHI
- 3. Larry L. Perterson and Bruce S. Davie , "Computer Networks- A Systems Approach", 2011, Morgan Kaufmann
- 4. Jochen Schiiler, "Mobile Communications", Pearson, 2nd Edition.

M. TECH. I YEAR I SEMESTER EMBEDDED SYSTEMS

EMBEDDED SYSTEMS LABORATORY

Note: Minimum of 10 Experiments have to be conducted Part-I

- A. Write a program
 - i. Write a simple program to print "hello world"
 - ii. Write a simple program to show a delay.
 - iii. Write a program for counting the number of times that a switch is pressed & released.
 - iv. Write a c program to test loop time outs.
 - v. Write a c program to test hardware based timeout loops.
 - vi. Illustrate the use of port header file (port M) using an interface consisting of a keypad and liquid crystal display.
- B. Write a program to create a portable hardware delay.
- C. Write a loop application to copy values from P1 to P2
- D. Develop a simple EOS showing traffic light sequencing.
- E. Write a program to drive SEOS using Timer 0.

Part-II

The following programs are to be implemented on ARM Processor

- 1. Simple assembly program for addition, Subtraction, Multiplication, Division, Operating Modes, System Calls and Interrupts, Loops, Branches.
- 2. Write an Assembly program to configure and control general purpose input/output (GPIO) port pins
- 3. To read digital values from external peripherals and execute them with the target board
- 4. Program for reading and writing of a file
- 5. To demonstrate time delay program using built in timer / counter feature on IDE environment
- 6. To demonstrate a simple interrupt handler and setting up a timer
- 7. Program to demonstrate a simple interrupt handlers. Press button to generate an interrupt and trace the program flow with debug terminal
- 8. Program to interface 8 Bit LED and Switch Interface
- 9. Program to implement Buzzer Interface on IDE environment

M. TECH. I YEAR I SEMESTER

List of Open Electives Offered by Various Departments, Effective from AY 2017-18

S. No	Name of the Department	Open Elective (S) Offered for Other Departments
1	Civil Engineering (Open Elective – I)	Computer Oriented Numerical Methods
2	Electronics and Communication Engineering (Open Elective – I)	Principles of Electronic Communications
3	Electrical and Electronics Engineering (Open Elective – I)	Renewable Energy Systems, Electrical Installation & Safety
4	Mechanical Engineering (Open Elective – I)	Optimization Techniques and Applications
5	Computer Science and Engineering (Open Elective – I)	Fundamentals of Cyber Security

CIVIL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

COMPUTER ORIENTED NUMERICAL METHODS (Open Elective – 1)

Course Objectives: To impart knowledge about various methods of analysing linear equations and understand the different mathematical techniques.

Course Outcomes: The learner will be able to apply various mathematical techniques to Structural engineering problems.

Unit - I:

Solutions of linear equations: Direct method – Cramer's rule, Guass – Elimination method- Gauss – Jordan elimination – Triangulation (LU Decomposition) method – Iterative methods Jacobi – Iteration method – Gauss – Siedel iteration, Successive over –relaxation method.

Eigen values and Eigen vectors: Jacobi method for symmetric matrices- Given's method for symmetric matrices-Householder's method for symmetric matrices-Rutishauser method of arbitrary matrices – Power method.

UNIT - II:

Interpolation: Linear Interpolation – Higher order Interpolation – Lagrange Interpolation – Interpolating polynomials using finites differences- Hermite Interpolation –piece-wise and spline Interpolation.

Unit - III

Finite Difference and their Applications: Introduction- Differentiation formulas by Interpolating parabolas – Backward and forward and central differences- Derivation of Differentiation formulae using Taylor series- Boundary conditions- Beam deflection – Solution of characteristic value problems- Richardson's extrapolation- Use of unevenly spaced pivotal points- Integration formulae by interpolating parabolas- Numerical solution to spatial differential equations – Applications to Simply Supported Beams, Columns and Rectangular Plates.

UNIT - IV

Numerical Differentiation: Difference methods based on undetermined coefficients- optimum choice of step length– Partial differentiation.

Numerical Integration: Method based on interpolation-method based on undetermined coefficient – Gauss – Lagrange interpolation method- Radaua integration method- composite integration method – Double integration using Trapezoidal and Simpson's method – New Marks Method and Application to Beams – Calculation of Slopes and Deflections.

UNIT - V

Ordinary Differential Equation: Euler's method – Backward Euler method – Midpoint method – single step method, Taylor's series method- Boundary value problems.

TEXT BOOKS:

- 1. Numerical methods for scientific and engineering computations. M.K. Jain-S.R.K. Iyengar R.K. Jain Willey Eastern Limited
- 2. Numerical Methods for Engineering Problems, N. Krishna Raju, KU Muthu, Mac-Millan publishers

- 1. Introductory Numerical Methods by S.S. Shastry, PHI Learning Pvt. Ltd.
- 2. Applied numerical analysis by Curtis I. Gerala- Addission Wasley published campus.
- 3. Numerical methods for Engineers Stevan C. Chopra, Raymond P. Canal Mc. Graw Hill Book Company.
- 4. C Language and Numerical methods by C. Xavier New age international publisher.
- 5. Computer based numerical analysis by Dr. M. Shanta Kumar, Khanna Book publishers, New Delhi.

ELECTRONICS AND COMMUNICATION ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

PRINCIPLES OF ELECTRONIC COMMUNICATIONS (Open Elective -1)

UNIT - I

Introduction: Need for Modulation, Frequency translation, Electromagnetic spectrum, Gain, Attenuation and decibels.

UNIT - II

Simple description on Modulation: Analog Modulation-AM, FM, Pulse Modulation-PAM, PWM, PCM, Digital Modulation Techniques-ASK, FSK, PSK, QPSK modulation and demodulation schemes.

UNIT - III

Telecommunication Systems: Telephones Telephone system, Paging systems, Internet Telephony. **Networking and Local Area Networks:** Network fundamentals, LAN hardware, Ethernet LANs, Token Ring LAN.

UNIT - IV

Satellite Communication: Satellite Orbits, satellite communication systems, satellite subsystems, Ground Stations Satellite Applications, Global Positioning systems.

Optical Communication: Optical Principles, Optical Communication Systems, Fiber –Optic Cables, Optical Transmitters & Receivers, Wavelength Division Multiplexing.

UNIT - V

Cellular and Mobile Communications: Cellular telephone systems, AMPS, GSM, CDMA, WCDMA. **Wireless Technologies:** Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless networks, Wimax and MANs, Infrared wireless, RFID communication, UWB.

TEXT BOOKS

- 1. Louis E. Frenzel, "Principles of Electronic Communication Systems", 3rd Ed., McGraw Hill publications, 2008.
- 2. Kennady, Davis, "Electronic Communications systems", 4Ed., TMH, 1999

REFERENCE BOOKS

- 1. Tarmo Anttalainen, "Introduction to Telecommunications Network Engineering", Artech House Telecommunications Library.
- 2. Theodore Rappaport, "Wireless Communications-Principles and practice", Prentice Hall, 2002.
- 3. Roger L. Freeman, "Fundamentals of Telecommunications", 2 Ed. Wiley publications.
- 4. Wayne Tomasi, "Introduction to data communications and networking", Pearson Education, 2005.

ELECTRICAL AND ELECTRONICS ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

RENEWABLE ENERGY SYSTEMS (Open Elective - I)

Course Objectives:

- To recognize the awareness of energy conservation in students
- To identify the use of renewable energy sources for electrical power generation
- To collect different energy storage methods
- To detect about environmental effects of energy conversion

Course Outcomes: Upon the completion of this course, the student will be able to

- find different renewable energy sources to produce electrical power
- estimate the use of conventional energy sources to produce electrical energy
- role-play the fact that the conventional energy resources are depleted
- arrange Store energy and to avoid the environmental pollution

Unit-I:

Photo voltaic power generation ,spectral distribution of energy in solar radiation, solar cell configurations, voltage developed by solar cell, photo current and load current, practical solar cell performance, commercial photo voltaic systems, test specifications for PV systems, applications of super conducting materials in electrical equipment systems.

Unit-II:

Principles of MHD power generation, ideal MHD generator performance, practical MHD generator, MHD technology.

Wind Energy conversion: Power from wind, properties of air and wind, types of wind Turbines, operating characteristics.

Unit-III:

Tides and tidal power stations, modes of operation, tidal project examples, turbines and generators for tidal power generation.

Wave energy conversion: properties of waves and power content, vertex motion of Waves, device applications. Types of ocean thermal energy conversion systems Application of OTEC systems examples,

Unit-IV:

Miscellaneous energy conversion systems: coal gasification and liquefaction, biomass conversion, geothermal energy, thermo electric energy conversion, principles of EMF generation, description of fuel cells, Co-generation and energy storage, combined cycle co-generation, energy storage. **Global energy position and environmental effects:** energy units, global energy position.

Unit-V:

Types of fuel cells, H_2 - O_2 Fuel cells, Application of fuel cells – Batteries, Description of batteries, Battery application for large power. Environmental effects of energy conversion systems, pollution from coal and preventive measures steam stations and pollution, pollution free energy systems.

TEXT BOOKS:

1. "Energy conversion systems" by Rakosh das Begamudre, New age International publishers, New Delhi - 2000.

2. "Renewable Energy Resources" by John Twidell and Tony Weir, 2nd Edition, Fspon & Co.

- 1. "Understanding Renewable Energy Systems" by Volker Quaschning, 2005, UK.
- 2. "Renewable Energy Systems-Advanced Conversion, Technologies & Applications" by Faner Lin Luo Honer Ye, CRC press, Taylor & Francis group.

ELECTRICAL INSTALLATION & SAFETY (Open Elective - I)

Course Objectives: The course should enable the students to:

- Understand Electrical Wiring with IE rules. Residential Building Electrification, Electrification of commercial Installation, Electrification of factory unit Installation
- Protection against electric shocks, Safety Measures & Prevention of Accidents

Course Outcomes: The students will be able to:

- Acquire the knowledge of different types wires and wiring systems, I.E. rules and Electric supply act.
- Explain the importance of earthling, rating of wires & cables, procedures for residential, commercial electrification.
- Able to estimate the length of wire, cable, conduit, earth wire, and earthing and also cost of residential, commercial electrification.

Unit-I: Electrical Wiring with IE rules.

Introduction, Define types of wires; Different types of wiring system; Comparison of different types of wiring; Different types and specifications of wiring materials; Accessories and wiring tools; Prepare I.E. rules for wiring, including Electricity supply act 2003& 2005;

Unit-II : Residential Building Electrification

General rules guidelines for wiring of Residential Installation and positioning of equipment's; Principles of circuit design in lighting and power circuits.; Procedures for designing the circuits and deciding the number of circuits.; Method of drawing single line diagram.; Selection of type of wiring and rating of wires &cables.; Load calculations and selection of size of conductor.; Selection of rating of main switch, distributions board, protective switchgear ELCB and MCB and wiring accessories.; Earthing of Residential Installation.

Unit-III: Electrification of commercial Installation

Concept of commercial Installation.; Differentiate between electrification of Residential and commercial Installation.; Fundamental considerations for planning of an electrical Installation system for commercial building.; Design considerations of electrical Installation system for commercial building.; Load calculations & selection of size of service connection and nature of supply.; Deciding the size of cables, bus bar and bus bar chambers.; Mounting arrangements and positioning of switch boards, distribution boards main switch etc.; Earthing of the electrical Installation; Selection of type wire, wiring system & layout.

Unit-IV: Electrification of factory unit Installation

Concept of Industrial load; Concept of Motor wiring circuit and single line diagram. Important guidelines about power wiring and Motor wiring.; Design consideration of Electrical Installation in small Industry/Factory/workshop.; Motor current calculations.; Selection and rating of wire, cable size & conduct.; Deciding fuse rating, starter, distribution boards main switch etc.; Deciding the cable route, determination of length of wire, cable, conduit, earth wire, and earthing.

Unit-V: Protection against electric shocks

Electric shock- General , Protection against direct contact, Protection against indirect contact, Protection of goods in case of insulation fault, Implementation of the TT system, Implementation of the TN system, Implementation of the IT system. Protection provided for enclosed equipment: codes IP

and IK, IP code definition, Elements of the IP Code and their meanings, IK Code definition, IP and IK code specifications for distribution switchboards

Safety Measures & Prevention of Accidents- Concept of electrical safety, electrical accidents, its causes & preventions.; Safety signs and symbols used in industry.; Electrical shocks and factors affecting the severity of it, method of rescuing electrocuted person & different methods of artificial respiration.; Electrical safety as per I.E. Rules 1956.; Do's & don'ts regarding safety while working on electrical installations.; Concept of Permit system, its preparation & regulation for attending to electrical work.; Precautions to be taken to avoid fire due to electrical reasons, operation of fire extinguishers, types of fire extinguishers.

TEXT BOOKS:

- 1. Dr. S.L. Uppal of Electrical Wiring, Estimating and Costing, New Age International (p) Limited, New Delhi.
- 2. Electrical Design Estimating and Costing, K.B. Raina & S.K. Battacharya, new age international (p) limited. Publishers
- 3. Electrical estimating & costing 2nd addition By Surjit singh
- 4. Electrical Installation Estimating & Costing, Gupta, J.B., S. K. Kataria & Sons, New Delhi

MECHANICAL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. Tech. I Year - I Sem.

OPTIMIZATION TECHNIQUES AND APPLICATIONS (Open Elective – 1)

UNIT- I

Single Variable Non-Linear Unconstrained Optimization: One dimensional Optimization methods:-Uni-modal function, elimination methods, ,, Fibonacci method, golden section method, interpolation methods – quadratic & cubic interpolation methods.

UNIT-II

Multi variable non-linear unconstrained optimization: Direct search method – Univariant method - pattern search methods – Powell's- Hook -Jeeves, Rosenbrock search methods- gradient methods, gradient of function, steepest decent method, Fletcher Reeves method, variable metric method.

UNIT- III

Linear Programming: Formulation – Sensitivity analysis. Change in the constraints, cost coefficients, coefficients of the constraints, addition and deletion of variable, constraints. **Simulation** – Introduction – Types- steps – application – inventory – queuing systems

UNIT -IV

Integer Programming: Introduction – formulation – Gomory cutting plane algorithm – Zero or one algorithm, branch and bound method

Stochastic programming:

Basic concepts of probability theory, random variables- distributions-mean, variance, correlation, co variance, joint probability distribution- stochastic linear, dynamic programming.

UNIT- V

Geometric Programming: Polynomials – arithmetic - geometric inequality – unconstrained G.P-constrained G.P (<= TYPE ONLY)

Non-traditional optimization Techniques: Genetic Algorithms-Steps-Solving simple problems-Comparitions of similarities and dissimilarities between traditional and non-traditional techniques-Particle Swarm Optimization (PSO)- Steps(Just understanding)-Simulated Annealing-Steps-Simple problems.

- 1. Optimization theory & Applications / S.S. Rao / New Age International.
- 2. Engineering Optimization-Kalyan Deb/ PHI
- 3. Introductory to operation Research / Kasan & Kumar / Springar
- 4. Optimization Techniques theory and practice / M.C.Joshi, K.M. Moudgalya/ Narosa
- 5. Publications
- 6. Operation Research / H.A. Taha /TMH
- 7. Optimization in operations research / R.L Rardin
- 8. Optimization Techniques /Benugundu & Chandraputla / Pearson Asia

COMPUTER SCIENCE AND ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

FUNDAMENTALS OF CYBER SECURITY (Open Elective - I)

Course Objective:

This course is aimed to generate interest and awareness in cyber security field, which is important in the world of information security due to the wide variety of computer crimes that take place in cyber space. The course deals with various types of attacks framed by an attacker, and the security which need to be implemented at various levels along with latest trends in cyber security.

UNIT-I:

Cyber Security Basics – Sphere, Terminology, Vulnerability in the Cyber Structure and Infrastructure, Cyber threats and Weaponry, Cyber Defense, Cyber Attack Detection and Prevention, Information Security Testing, Cyber Security Investigation/assessment, Cyber-Deterrence.

UNIT-II:

Cyber Crimes and Cyber Laws – Introduction, IT laws & Cyber Crimes – Internet, Hacking, Password Cracking, Viruses, Virus Attacks, Pornography, Software Privacy, Intellectual Property, Legal System of Information Technology, Social Engineering, Phishing, Denial of Service attack, Malicious Code, Mail Bombs, Worms, Logic Bombs, Botnet, Trojan, Bug Exploits.

UNIT-III:

End point Security: Desktop and Laptop Security, Cell Phone and PDA Security, Bluetooth Security, Patch and Vulnerability Management, Password Management, Security for Full Virtualization Technologies, Media Sanitization, Security Radio Frequency Identification (RFID) Systems. **Network Security:** Intrusion Detection & Prevention Systems, Firewalls and Firewall Policy, Computer Security Log Management, Enterprise Tele work and Remote Access Security, Securing WiMAX Wireless Communication. **Web Security:** Server Security, Web authentication, SSL and SET, Securing Public Web Servers, Secure Deployment of IPv6, Secure Domain name System (DNS) Deployment, SSL VPNs, Unified Threat Management (UTM).;

UNIT-IV:

Application Security: Active Content and Mobile Code, E-commerce Security, Email Security (PGP, S/MIME), Web Security, Web Application Security, OWASP; **Data Security:** Data Management, Database Security, Data Encryption, Data Leakage Prevention (DLP), Data Destruction; **Software Security:** Software Flaws, Malware, Software based Attacks; Insecurity in Software: SRE, Software Tamper Resistance, DRM, Software Development.

Operating System Security: Security Functions, Software Updates and Patches, OS Integrity Checks, Account management, Antivirus Software, Security in Ordinary Operating Systems, Design of Secure OS, OS hardening, Configuring the OS for security, Security kernels, Secure Virtual machine Systems, Trusted Operating System, NGSCB.

UNIT-V:

Recent Trends in Cyber Security – Zero – day Malware, Trojan Wars, New Ways to Monetize Non-Financial Data, Fraud-as-a-service, Out-of-band Methods forcing Cybercriminals to Innovate, The Rise of Hactivism, Attacks in mobile devices, social media and cloud computing; Insider threats, Increased regulatory security, Cyber-Terrorism, Cyber –War and Cyber-Peace. Topological Vulnerability Analysis, Cyber Situational Awareness, Secure Composition of Systems, Autonomic Recovery, Secure Data Centers, Cloud Computing Security, Privacy in location-Based Applications.

TEXT BOOKS:

- 1. Cyber Security, Edward Amoroso, kindle Edition, 2007
- 2. Cyber Security ,Understanding Cyber crimes, Computer Forensics and Legal Perspectives, Sunita Belapure and Nina Godbole, Wiley India Pvt Ltd. 2011

- 1. Computer Security, Dirter Gollmann, John Wiley & Sons Publication, 2011
- 2. Cyber Security Essentials, James Graham, Richard Howrad, Ryan Olson, CRC Press, 2011

ADVANCED STEEL DESIGN (PC - IV)

Course Objectives: To impart knowledge on behavior and design of various connections, industrial and steel girders.

Course Outcomes: The learner will be able to design different steel structures

UNIT - I:

Simple connections – Bolted, Pinned and Welded Connections: Bolted Connections- Load Transfer Mechanism – Failure of Bolted Joints – Specifications for Bolted Joints – Bearing – Type Connections – Tensile Strength of Plate – Strength and Efficiency of the Joint – Combined Shear and Tension – Slip – Critical Connections – Praying Action – Combined Shear and Tension for Slip-Critical Connections. Design of Groove welds- Design of Fillet Welds- Design of Intermittent fillet welds- Failure of Welds.

UNIT – II

Eccentric and Moment Connections: Introduction – Beams – Column Connections- Connections Subjected to Eccentric Shear – Bolted Framed Connections- Bolted Seat Connections – Bolted Bracket Connections. Bolted Moment Connections – Welded Framed Connections – Welded Bracket Connections - Moment Resistant Connections.

UNIT - III

Analysis and Design of Industrial Buildings : Dead loads, live loads and wind loads on roofs. Design wind speed and pressure, wind pressure on roofs; wind effect on cladding and louvers; Design of angular roof truss, tubular truss, truss for a railway platform. Design of purlins for roofs, design of built up purlins, design of knee braced trusses and stanchions. Design of bracings.

UNIT - IV:

Design of Steel Truss Girder Bridges :Types of truss bridges, component parts of a truss bridge, economic proportions of trusses, self weight of truss girders, design of bridge compression members, tension members; wind load on truss girder bridges; wind effect on top lateral bracing; bottom lateral bracing; portal Bracing; sway bracing.

UNIT - V:

Design of Steel Bunkers and Silos: Introduction – Janseen's Theory – Airy's Theory – Design of Parameters – Design Criteria – Analysis of Bins – Hopper Bottom –Design of Bins.

TEXT BOOKS:

- 1. Limit State Design of Steel Structures S. K. Duggal, McGraw Hill Education Private Ltd. New Delhi.
- 2. Design of Steel Structures, K. S. Sairam, Pearson Education.

- 1. Design of Steel Structures, N. Subramanian, Oxford University Press.
- 2. Design Steel Structures Volume II, Dr. Ramachandra & Vivendra Gehlot, Scientific Publishers Journals Department.
- 3. Design of Steel Structures Gaylord & Gaylord, Publisher; Tata McGraw Hill, Education. Edition 2012.
- 4. Indian Standard Code IS 800-2007 General Construction in Steel- Code of Practice,
- 5. Steel Tables.

THEORY OF PLATES (PC - V)

Course Objectives: To impart knowledge on the behavior of plates and to analyse the problems pertaining to beams on elastic foundation.

Course Outcomes: The learner will be able to understand the behavior of plates for loadings and boundary conditions.

UNIT - I

Cylindrical Bending: Different kind of plates – Assumptions – Derivation of differential equation for cylindrical bending of long rectangular plates - Analysis of uniformly loaded rectangular plates with edges simply supported and fixed subjected to uniform load.

Pure Bending of Plates: Slope and curvature of slightly bent plates – Relations between moments and curvature - Particular cases of pure bending - Strain energy in pure bending –Energy methods like Ritz and Galerkin Methods to rectangular plates subjected to simple loadings.

UNIT - II

Small Deflection Theory of Thin Rectangular Plates :Assumptions – Derivation of governingdifferential equation for thin plates – Boundary conditions – simplysupportedplateundersinusoidal load – Navier's solution – Application to differentcases – Levy's solution for variousboundary conditions subjected to different loadingslike uniform and hydrostatic pressure.

UNIT - III

Circular Plates : Symmetrical loading – Relations between slope, deflection, moments and curvature – Governing differential equation – Uniformly loaded plates with clamped and simply supported edges – Central hole – bending by moments and shearing forces uniformly distributed.

Orthotropic Plates: Introduction – Bending of anisotropic plates - Derivation of governing differential equation – Determination of Rigidities in various cases like R.C. slabs, corrugated sheet – Application to the theory of grid works.

UNIT - IV

Plates on Elastic Foundations: Governing differential equation – deflection of uniformly loaded simply supported rectangular plate – Navier and Levy type solutions – Large plate loaded at equidistant points by concentrated forces P.

UNIT - V

Buckling of Plates: Governing equation for Bending of plate under the combined action of in-plane loading and lateral loads – Buckling of rectangular plates by compressive forces acting in one and two directions in the middle plane of plate

Finite Difference Methods: Introduction - Application to rectangular plates subjected to simple loading.

TEXT BOOK

1. Theory of Plates and Shells by Timoshenko, McGraw Hill Book Co., New York.

- 1. Theory and Analysis of Plates by P. Szilard, Prentice Hall.
- 2. Theory of Plates by K. Chandrasekhara, University Press.
- 3. Plate Analysis by N. K. Bairagi, Khanna Publishers. New Delhi.
- 4. Numerical Methods for Engineering Problems, N. Krishna Raju & K. U Muthu, Mac-Millan publishers

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.) PRE-STRESSED CONCRETE (PC - VI)

Course Objectives: To impart knowledge on basics of prestressing and designing of different structural elements using Prestressing techniques.

Course Outcomes: The learner will be able to understand the prestressing techniques, design the various structural elements using Prestressing techniques.

UNIT - I

General Principles of Prestressed Concrete : Pre-tensioning and post – tensioning – Prestressing by straight, concentric, eccentric, bent and parabolic tendons – Different methods and systems of prestressing like Hoyer system, Freyssinet system, Magnel Blaton system – Lee-Mc call system. Losses of Prestress: Loss of prestress in pre-tensioned and post-tensioned members due to various causes like elastic shortening of concrete, shrinkage of concrete, creep of concrete, relaxation of steel, slip in anchorage, bending of member and frictional loss – Analysis of sections for flexure.

UNIT - II

Design of Section for Flexure: Allowable stresses – Elastic design of simple beams having rectangular and I-section for flexure – kern lines – cable profile and cable layout.

Design of Sections for Shear: Shear and Principal Stresses – Improving shear resistance by different prestressing techniques – horizontal, sloping and vertical prestressing – Analysis of rectangular and I–beam – Design of shear reinforcement – IS: 1343: 2012 provisions.

UNIT - III

Deflections of Prestressed Concrete Beams : Short term deflections of uncracked members– Prediction of long-time deflections – load – deflection curve for a PSC beam – IS code requirements for max. Deflections.

UNIT - IV

Transfer of Prestress in Pretensioned Members : Transmission of prestressing force by bond – Transmission length – Flexural bond stresses – IS: 1343 : 2012 provisions – Anchorage zone stresses in post tensioned members – stress distribution in End block – Analysis by approximate, Guyon and Magnel methods – Anchorage zone reinforcement.

UNIT - V

Statically Indeterminate Structures : Advantages & disadvantages of continuous PSC beams – Primary and secondary moments – P and C lines – Linear transformation concordant and non-concordant cable profiles – Analysis of continuous beams and simple portal frames (single bay and single story)

TEXT BOOKS:

- 1. Prestressed concrete by Krishna Raju, Tata McGraw Hill Book Co., New Delhi.
- 2. Prestressed Concrete by K.U. Muthu, et.al, PHI Learning Pvt. Ltd.,

- 1. Design of Prestressed Concrete Structures by T.Y. Lin and Burn, John Wiley, New York.
- 2. Prestressed Concrete by N. Rajagopalan, Alpha Science International.
- 3. Prestressed Concrete by S. RamamruthamDhanpatRai& Sons, Delhi.
- 4. IS 1343 -2012 Prestressed Concrete Code of Practice, Bureau of Indian Standards.

M. Tech - I Year - II Sem. (Structural Engg.)

FINITE ELEMENT METHOD (PE – III)

Course Objectives: To impart knowledge about various finite element techniques and development of finite element code.

Course Outcome: The learner will be able to solve continuum problems using finite element analysis.

UNIT - I

Introduction: Concepts of FEM - steps involved - merits and demerits - energy principles – Discretization - Raleigh - Ritz method of functional approximation.

Principles of Elasticity: Stress equations - strain displacement relationships in matrix form plane stress, plane strain and axi-symmetric bodies of revolution with axi-symmetric loading.

UNIT - II

One dimensional FEM:Stiffness matrix for beam and bar elements - shape functions for 1-D elements. Two dimensional FEM: Different types of elements for plane stress and plane strain analysis displacement models - generalized coordinates - shape functions - convergent and compatibility requirements - geometric invariance - natural coordinate system - area and volume coordinates generation of element stiffness and nodal load matrices

UNIT - III

Isoparametric formulation: Concept - different isoparametric elements for 2D analysis -formulation of 4-noded and 8-noded isoparametric quadrilateral elements - Lagrange elements - serendipity elements.

Axi Symmetric Analysis: bodies of revolution - axi symmetric modeling - strain displacement relationship - formulation of axi symmetric elements.

Three dimensional FEM: Different 3-D elements-strain-displacement relationship –formulation of hexahedral and isoparametric solid element.

UNIT - IV

Introduction to Finite Element Analysis of Plates:Basic theory of plate bending - thin plate theory - stress resultants - Mindlin's approximations - formulation of 4-noded isoperimetric quadrilateral plate element – Shell Element.

UNIT - V

Introduction to non - linear finite analysis - basic methods - application to Special structures.

Text Books:

- 1. A First Course in a Finite Element by Daryl L .Logan, CL Engineers.
- 2. Concepts and Applications of Finite Element Analysis by Robert D. Cook, David S. Malkus and Michael E. Plesha, John Wiley & Sons.

References:

- 1. Introduction to Finite element Method by Tirupathi Chandra Patla and Belugunudu
- 2. Finite element Methods by OC Zienkiewicz
- 3. Finite element analysis, theory and programming by GS Krishna Murthy.
- 4. Introduction to Finite element Method by JN Reddy.

BRIDGE ENGINEERING (PE - III)

Course Objectives: To impart knowledge on the behavior and design aspects of various types of bridges.

Course Outcomes: The learner will be able to analyze and design of different types of bridges

UNIT - I

Concrete Bridges: Introduction-Types of Bridges-Economic span length-Types of loading-Dead loadlive load-Impact Effect-Centrifugal force-wind loads-Lateral loads-Longitudinal forces-Sesmic loads-Frictioal resistance of expansion bearings-Secondary Stresses-Temperature Effect-Erection Forces and effects-Width of raodway and footway-General Design Requirements.

UNIT - II

Solid slab Bridges: Introduction-Method of Analysis and Design.

UNIT - III

Girder Bridges: Introduction-Method of Analysis and Design-Courbon's Theory, Grillage analogy

UNIT - IV

Pre-Stressed Concrete Bridges: Basic principles-General Design requirements-Mild steel reinforcement in prestessed concrete member-Concrete cover and spacing of pre-stressing steel-Slender beams-Composite Section-Propped-Design of Propped Composite Section-Unproped composite section-Two-stage Prestressing-Shrinking stresses-General Design requirements for Road Bridges.

UNIT - V

Analysis of Bridge Decks: Harmonic analysis and folded plate theory-Grillage analogy- Finite strip method and FEM. Sub-structure of bridges: Substructure- Beds block-Piers- Pier Dimensions- Design loads for piers- Abutments- Design loads for Abutments.

TEXT BOOKS:

- 1. Essentials of Bridge Engineering by Johnson Victor, Oxford & IBH
- 2. Design of Bridges by N. Krishna Raju, Oxford & IBH

- 1. Design of Concrete Bridges by M. G. Aswani, V. N. Vazirani and M. M. Ratwani.
- 2. Bridge Deck Behaviour by E. C. Hambly.
- 3. Design of Bridges by V. V. Sastry, Dhanpat Rai & Co
- 4. Concrete Bridge Design and Practice by V. K. Raina.
- 5. Design of Bridge Structures by Jagadeesh & Jayaram, PHI learning Pvt. Itd.
- 6. IRC: 112, 2011, Code of Practice for Concrete Road Bridges.
- 7. IRC: 6 and 21 2000, Code of Practice for Concrete Road Bridges

DESIGN OF SUBSTRUCTURES (PE - III)

Course Objectives: To impart knowledge on geotechnical and structural design of different types of foundation appropriate to the type of soil for different structures.

Course Outcome: The learner will be able to design shallow and deep foundations from both geotechnical and structural considerations.

UNIT – I

Shallow Foundations: Basic requirements of foundation –Types and selection of foundations. Bearing capacity of foundations, structural design of isolated, combined, eccentric, strip, and strap footings, Detailing of reinforcement.

UNIT – II

Raft Foundations: Types of rafts, SBC of raft foundation and structural design of different raft foundations, Detailing of reinforcement.

UNIT – III

Pile Foundations: Types of piles, Load carrying capacity of single and pile groups, structural design of piles, pile caps and pile-raft foundation, Detailing of reinforcement.

UNIT – IV

Design of Retaining walls: Stability Checks and structural design of gravity, Cantilever retaining walls, Detailing of reinforcement.

UNIT – V

Machine Foundations: Vibration analysis of machine foundation - Design of foundation for Reciprocating machines and Impact machines - as per I S Codes, Detailing of reinforcement.

TEXT BOOKS:

- 1. Varghese P.C. Design of RC foundations, PHI Learning Pvt. Ltd.
- 2. Unnikrishnana Pillai & Devadas Menon, Reinforces Concrete Design, McGraw Hill Publishing Pvt. Ltd.

- 1. Bowles .J.E., "Foundation Analysis and Design", McGraw Hill Publishing co., New York, 1986
- 2. Tomlinson. M.J, "Foundation Design and Construction", Longman, Sixth Edition, New Delhi, 1995.
- 3. Das, B.M., Principles of Foundation Engineering, Design and Construction, Fourth Edition, PWS Publishing, 1999.
- 4. Narayan V. Nayak, Foundation design manual, Dhanpat Rai & Sons, 2006.
- 5. Prakash Shamsher and Puri Vijay K, Foundations for Machines, Analysis and Design" John Wiley and Sons, USA, 1988.
- 6. IS 2911: Part 1: Sec 1: 1979 Code of practice for design and construction of pile foundations: Part 1 Concrete piles, Section 1 Driven cast in-situ concrete piles.

EARTHQUAKE RESISTANT DESIGN OF BUILDINGS (PE - IV)

Course Objectives: To impart knowledge on the seismology and behavior of buildings during earthquakes.

Course Outcomes: The learner will be able to analyse and design buildings to resist seismic forces

UNIT - I

Engineering Seismology: Earthquake phenomenon cause of earthquakes-Faults- Plate tectonics-Seismic waves- Terms associated with earthquakes-Magnitude/Intensity of an earthquake-scales-Energy released-Earthquake measuring instruments-Seismoscope, Seismograph, accelerograph-Characteristics of strong ground motions- Seismic zones of India.

UNIT - II

Conceptual design: Introduction-Functional planning-Continuous load path-Overall form-simplicity and symmetry-elongated shapes-stiffness and strength-Horizontal and Vertical members-Twisting of buildings-Ductility-definition-ductility relationships-flexible buildings-framing systems-choice of construction materials-unconfined concrete-confined concrete-masonry-reinforcing steel. Introduction to earthquake resistant design: Seismic design requirements-regular and irregular configurations-basic assumptions-design earthquake loads-basic load combinations-permissible stresses-seismic methods of analysis-factors in seismic analysis-equivalent lateral force method-dynamic analysis-response spectrum method-Time history method.

UNIT - III

Reinforced Concrete Buildings: Principles of earthquake resistant deign of RC members- Structural models for frame buildings- Seismic methods of analysis- Seismic deign methods- IS code based methods for seismic design- Seismic evaluation and retrofitting- Vertical irregularities- Plan configuration problems- Lateral load resisting systems- Determination of design lateral forces-Equivalent lateral force procedure- Lateral distribution of base shear. Masonry Buildings: Introduction-Elastic properties of masonry assemblage- Categories of masonry buildings- Behaviour of unreinforced and reinforced masonry walls- Behaviour of walls- Box action and bands- Behaviour of infill walls- Improving seismic behaviour of masonry buildings- Load combinations and permissible stresses- Seismic design requirements- Lateral load analysis of masonry buildings.

UNIT - IV

Structural Walls and Non-Structural Elements: Strategies in the location of structural walls- sectional shapes- variations in elevation- cantilever walls without openings – Failure mechanism of non-structures- Effects of non-structural elements on structural system- Analysis of non-structural elements- Prevention of non-structural damage- Isolation of non-structures.

UNIT - V

Ductility Considerations in Earthquake Resistant Design of RC Buildings: Introduction- Impact of Ductility- Requirements for Ductility- Assessment of Ductility- Factors affecting Ductility- Ductile detailing considerations as per IS 13920. Behaviour of beams, columns and joints in RC buildings during earthquakes-Vulnerability of open ground storey and short columns during earthquakes. Capacity Based Design: Introduction to Capacity Design, Capacity Design for Beams and Columns-Case studies.

TEXT BOOKS:

- 1. Earthquake Resistant Design of structures S. K. Duggal, Oxford University Press
- 2. Earthquake Resistant Design of structures Pankaj Agarwal and Manish Shrikhande, Prentice Hall of India Pvt. Ltd.

REFERENCE BOOKS:

- 1. Seismic Design of Reinforced Concrete and Masonry Building T. Paulay and M.J.N. Priestly, John Wiley & Sons
- 2. Masory and Timber structures including earthquake Resistant Design Anand S.Arya, Nemchand & Bros
- 3. Earthquake –Resistant Design of Masonry Building –Miha Tomazevic, Imperial College Press.
- 4. Earthquake Tips Learning Earthquake Design and Construction C. V. R. Murty

REFERENCE CODES:

- 1. IS: 1893 (Part-1) -2016. "Criteria for Earthquake Resistant Design of structures." B.I.S., New Delhi.
- 2. IS: 4326-1993, "Earthquake Resistant Design and Construction of Building", Code of Practice B.I.S., New Delhi.
- 3. IS: 13920- 2016, "Ductile detailing of concrete structures subjected to seismic force" Guidelines, B.I.S., New Delhi.

REPAIR & REHABILITATION OF BUILDINGS (PE - IV)

Course Objectives: To impart knowledge on the distress in structures.

Course Outcomes: The learner will be able to understand the reasons for distress in structures and will be able to suggest suitable solutions

UNIT – I

Introduction – Deterioration of Structures – Distress in Structures – Causes and Prevention. Mechanism of Damage – Types of Damage.

UNIT – II

Corrosion of Steel Reinforcement – Causes – Mechanism and Prevention. Damage of Structures due to Fire – Fire Rating of Structures – Phenomena of Desiccation.

UNIT – III

Inspection and Testing – Symptoms and Diagnosis of Distress - Damage assessment – NDT.

UNIT – IV

Repair of Structure – Common Types of Repairs – Repair in Concrete Structures – Repairs in Under Water Structures – Guniting – Shotcreting – Underpinning -Strengtheningof Structures – Strengthening Methods – Retrofitting – Jacketing.

UNIT – V

Health Monitoring of Structures - Use of Sensors - Building Instrumentation

- 1. Concrete Technology by A. R. Santhakumar, Oxford University press
- 2. Defects and Deterioration in Buildings, E F & N Spon, London
- 3. Non-Destructive Evaluation of Concrete Structures by Bungey Surrey University Press
- 4. Maintenance, Repair & Rehabilitation and Minor Works of Buildings by P. C. Varghese, PHI.
- 5. Maintenance and Repair of Civil Structures, B.L. Gupta and Amit Gupta, Standard Publications.
- 6. Concrete Repair and Maintenance Illustrated, RS Means Company Inc W. H. Ranso, (1981)
- 7. Building Failures: Diagnosis and Avoidance, EF & N Spon, London, B. A. Richardson, (1991).

STABILITY OF STRUCTURES (PE - IV)

Course Objectives: To impart knowledge on the elastic, inelastic buckling and torsional buckling of structures.

Course Outcomes: The learner will be able to understand buckling of bars and frames.

UNIT – I

Beam Columns: Differential equations for beam columns- beam columns with concentrated loads – continuous lateral loads-couples- beam columns with built in ends – continuous beams with axial load – application of trigonometrically series – Effects of initial curvature on deflections – Determination of allowable stresses.

UNIT - II

Elastic Buckling of bars and frames: Elastic Buckling of straight columns – Effect of shear stress on buckling – Eccentrically and laterally loaded columns- Buckling of frames-large deflections of buckled bars-Energy methods- Buckling of bars on elastic foundations- Buckle line of bar with intermediate compressive forces - Buckling of bars with change in cross-section – Effect of shear force on critical load- built up columns.

UNIT - III

In Elastic Buckling: Buckle line of straight bar- Double modulus theory – Tangent modulus theory, Inelastic lateral Buckling. Experiments and design formulae: Experiments on columns – Critical stress diagram – Empirical formulae for design –various end conditions

UNIT - IV

Torsion Buckling: Pure torsion of thin walled bars of open cross section – Non-uniform torsion of thin walled bars of open cross section- Torsional buckling – Buckling by torsion and flexure.

UNIT – V

Lateral buckling of simply supported Beams: Beams of Rectangular cross-section subjected to pure bending. Buckling of simply supported Rectangular plates: Derivation of equation of plate subjected to constant compression in one and two directions.

TEXT BOOKS

1. Theory of elastic Stability by Timshenko & Gere -McGraw Hill

- 1. Stability of metallic structures by Blunch- McGraw Hill
- 2. Theory of Beam- Columns Vol. I by Chem. & Atste McGraw Hill
- 3. Stability Theory of Structures by Ashwini Kumar, Allied Publishers.

CAD LABORATORY

Course Objective: To impart knowledge on the use of various softwares

Course Outcome: the student will be able to analyze and design structural elements of a building

- Design of beam using Excel for flexural shear and with deflection check

 a) Singly and doubly reinforced RC Beam
- 2. Design of Steel Beam using Excel for flexural shear and with deflection check
- 3. Design of RC slab one-way and two-way using Excel
- 4. Design of RC short & long columns subjected to biaxial bending.
- 5. Design of isolated footings using Excel
- 6. Analysis & design of 2-D steel truss
- 7. Analysis & Design of 2-D building frame
- 8. Analysis & Design of Multi-storey space frame (for mid rise) subjected to lateral loads
- 9. Plate bending using FEM
- 10. Modal analysis of a high rise building

Note: Exercises from 6-10 may be carried out using any relevant commercial software package.

M. TECH. I YEAR II SEMESTER

List of Open Electives Offered by Various Departments, Effective from AY 2017 - 18

S. No	Name of the Department	Open Elective (S) Offered for Other Departments
1	Civil Engineering	 Finite Element Method
	(Open Elective – II)	2. Optimization Techniques
2	Electronics and Communication	1. Industrial Instrumentation
	Engineering (Open Elective – II)	2. Principles of Computer Communications and Networks
3	Electrical and Electronics Engineering	1. Energy From Waste
	(Open Elective – II)	Distributed Generation and Microgrid
		Reliability Engineering
4	Mechanical Engineering	1. Engineering Research Methodology
	(Open Elective – II)	
5	Computer Science and Engineering (Open Elective – II)	1. Machine Learning

*Open Elective subject must be chosen from the list of open electives offered by OTHER departments.

Ex: A M.Tech ECE student cannot take Open Elective – II offered by ECE Dept, but can select from open electives offered by OTHER departments.

CIVIL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

FINITE ELEMENT METHOD (Open Elective – II)

Course Objectives: To impart knowledge about various finite element techniques and development of finite element code.

Course Outcome: The learner will be able to solve continuum problems using finite element analysis.

UNIT - I

Introduction: Concepts of FEM - steps involved - merits and demerits - energy principles -

Discretization - Raleigh - Ritz method of functional approximation.

Principles of Elasticity: Stress equations - strain displacement relationships in matrix form plane stress, plane strain and axi-symmetric bodies of revolution with axi-symmetric loading.

UNIT - II

One dimensional FEM: Stiffness matrix for beam and bar elements - shape functions for 1-D elements. Two dimensional FEM: Different types of elements for plane stress and plane strain analysis displacement models - generalized coordinates - shape functions - convergent and compatibility requirements - geometric invariance - natural coordinate system - area and volume coordinates generation of element stiffness and nodal load matrices

UNIT - III

Isoparametric formulation:Concept - different isoparametric elements for 2D analysis -formulation of 4noded and 8-noded isoparametric quadrilateral elements - Lagrange elements - serendipity elements. Axi Symmetric Analysis:bodies of revolution - axi symmetric modeling - strain displacement relationship - formulation of axi symmetric elements.

Three dimensional FEM:Different 3-D elements-strain-displacement relationship –formulation of hexahedral and isoparametric solid element.

UNIT - IV

Introduction to Finite Element Analysis of Plates:Basic theory of plate bending - thin plate theory - stress resultants - Mindlin's approximations - formulation of 4-noded isoperimetric quadrilateral plate element – Shell Element.

UNIT - V

Introduction to non – linear finite analysis – basic methods – application to Special structures.

TEXT BOOKS:

- 1. A First Course in a Finite Element by Daryl L .Logan, CL Engineers.
- 2. Concepts and Applications of Finite Element Analysis by Robert D.Cook, DavidS. Malkus and Michael E. Plesha, John Wiley & Sons.

- 1. Introduction to Finite element Method by Tirupathi Chandra Patla and Belugunudu
- 2. Finite element Methods by OC Zienkiewicz
- 3. Finite element analysis, theory and progarmming by GS Krishna Murthy.
- 4. Introduction to Finite element Method by JN Reddy.

CIVIL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

OPTIMIZATION TECHNIQUES (Open Elective – II)

Course Objectives: To understand the theory of optimization methods and algorithms developed for solving various types of optimization problems

Course Outcomes: The student will be able to understand the basic principles of optimization, and in a position to formulate optimization models for a wide range of civil engineering problems and able to solve them.

Unit-I

Linear Programming: Introduction and need for optimization in engineering design, formulating linear programs, graphical solution of linear programs, special cases of linear programming.

UNIT - II

The Simplex Method: Converting a problem to standard form, the theory of the simplex method, the simplex algorithm, special situations in the simplex algorithm, obtaining initial feasible solution.

UNIT - III

Duality and Sensitivity Analysis: Sensitivity analysis, shadow prices, dual of a normal linear program, duality theorems, dual simplex method. Integer Programming: Formulating integer programming problems, the branch-and-bound algorithm for pure integer programs, the branch-and-bound algorithm for mixed integer programs.

UNIT - IV

Non-linear Programming: Introduction to non-linear programming (NLP), Convex and concave functions, NLP with one variable, Line search algorithms, Multivariable unconstrained problems, constrained problems, Lagrange Multiplier, The Karush-Kuhn-Tucker (KKT) conditions, the method of steepest ascent, convex combination method, penalty function, Quadratic programming,

UNIT - V

Dynamic programming: Evolutionary algorithms: Genetic Algorithm, concepts of multiobjective optimization, Markov Process, Queuing Models.

TEXT BOOK:

1. S.S. Rao, Engineering Optimization: Theory and Practice, Wiley & Sons, New Jersey, 2009.

- 1. F.H. Hiller and G.J. Liberman, Introduction to Operations Research, Tata-McGraw-Hill, 2010.
- W.L. Winston, Operations Research: Applications and Algorithm, 4th Edition, Cengage Learning, 1994.
- 3. K.Deb, Optimization for Engineering Design, Prentice Hall, 2013.
- 4. M.C. Joshi and K.M. Moudgalay, Optimization: Theory and Practice, Narosa, 2004.
- 5. K. Deb, Multi-Objective Optimization using evolutionary algorithms, John Wiley and Sons, 2009.

ELECTRONICS AND COMMUNICATION ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

INDUSTRIAL INSTRUMENTATION (Open Elective – II)

UNIT - I

METROLOGY, VELOCITY AND ACCELERATION MEASUREMENT: Measurement of length -Gauge blocks – Plainness – Area using Simpson's rule, Plain meter – Diameter – Roughness – Angle using Bevel protractor, sine bars and Clinometer – Mechanical, Electrical, Optical and Pneumatic Comparators. Optical Methods for length and distance measurements using Optical flats and Michelson Interferometer.

Relative velocity – Translational and Rotational velocity measurements – Revolution counters and Timers - Magnetic and Photoelectric pulse counting stroboscopic methods. Accelerometers-different types, Gyroscopes-applications.

UNIT - II

FORCE AND PRESSURE MEASUREMENT: Force measurement – Different methods –Gyroscopic Force Measurement – Vibrating wire Force transducer. Basics of Pressure measurement –Manometer types – Force-Balance and Vibrating Cylinder Transducers – High and Low Pressure measurement – McLeod Gauge, Knudsen Gauge, Momentum Transfer Gauge, Thermal Conductivity Gauge, Ionization Gauge, Dual Gauge Techniques, Deadweight Gauges, Hydrostatic Pressure Measurement

UNIT - III

FLOW MEASUREMENT AND LEVEL MEASUREMENT: Flow Meters- Head type, Area type (Rota meter), electromagnetic type, Positive displacement type, mass flow meter, ultrasonic type, vertex shedding type, Hotwire anemometer type, Laser Doppler Velocity-meter. Basic Level measurements – Direct, Indirect, Pressure, Buoyancy, Weight, Capacitive Probe methods

UNIT - IV

DENSITY, VISCOSITY AND OTHER MEASUREMENTS: Density measurements – Strain Gauge load cell method – Buoyancy method - Air pressure balance method – Gamma ray method – Vibrating probe method. Units of Viscosity, specific gravity scales used in Petroleum Industries, Different Methods of measuring consistency and Viscosity –Two float viscorator –Industrial consistency meter. Sound-Level Meters, Microphones, Humidity Measurement

UNIT - V

CALIBRATION AND INTERFACING: Calibration using Master Sensors, Interfacing of Force, Pressure, Velocity, Acceleration, Flow, Density and Viscosity Sensors, Variable Frequency Drive

TEXT BOOKS:

- 1. Doeblin E.O., "Measurement Systems Applications and Design", 4th Edition, McGraw Hill International, 1990.
- 2. Patranabis D, "Principles of Industrial Instrumentation", TMH. End edition 1997

- 1. Considine D. M., "Process Instruments and Control Handbook", 4th Edition, McGraw Hill International, 1993
- 2. Jain R.K., "Mechanical and Industrial Measurements", Khanna Publications.

ELECTRONICS AND COMMUNICATION ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

PRINCIPLES OF COMPUTER COMMUNICATIONS AND NETWORKS (Open Elective – II)

Prerequisite: Nil

Course Objectives:

- To understand the concept of computer communication.
- To learn about the networking concept, layered protocols.
- To understand various communications concepts.
- To get the knowledge of various networking equipment.

Course Outcomes: The student:

- Can get the knowledge of networking of computers, data transmission between computers.
- Will have the exposure about the various communication concepts.
- Will get awareness about the structure and equipment of computer network structures.

UNIT - I

Overview of Computer Communications and Networking: Introduction to Computer Communications and Networking, Introduction to Computer Network, Types of Computer Networks, Network Addressing, Routing, Reliability, Interoperability and Security, Network Standards, The Telephone System and Data Communications.

UNIT - II

Essential Terms and Concepts: Computer Applications and application protocols, Computer Communications and Networking models, Communication Service Methods and data transmission modes, analog and Digital Communications, Speed and capacity of a Communication Channel, Multiplexing and switching, Network architecture and the OSI reference model.

UNIT - III

Analog and Digital Communication Concepts: Representing data as analog signals, representing data as digital signals, data rate and bandwidth reduction, Digital Carrier Systems.

UNIT - IV

Physical and data link layer Concepts: The Physical and Electrical Characteristics of wire, Copper media, fiber optic media, wireless Communications. Introduction to data link Layer, the logical link control and medium access control sub-layers.

UNIT - V

Network Hardware Components: Introduction to Connectors, Transreceivers and media convertors, repeaters, network interference cards and PC cards, bridges, switches, switches Vs Routers.

TEXT BOOKS:

1. Computer Communications and Networking Technologies, Michel A. Gallo and William H. Hancock, Thomson Brooks / Cole.

REFERENCE BOOKS:

1. Principles of Computer Networks and Communications, M. Barry Dumas, Morris Schwartz, Pearson.

ELECTRICAL AND ELECTRONICS ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ENERGY FROM WASTE (Open Elective – II)

Prerequisite: Renewable Energy Sources, Physics, Environmental Studies

Course Objectives:

- To classify solid waste sources
- To identify methods of solid waste disposal
- To study various energy generation methods
- · To analyse biogas production methods and recycling of e-waste

Course Outcomes: Upon the completion of the subject, the student will be able to

- Understand technologies for generation of energy from solid waste
- Compare methods of solid waste disposal
- Identify sources of energy from bio-chemical conversion
- Analyze methods for management of e-waste

UNIT- I

Solid Waste Sources Solid Waste Sources, types, composition, Properties, Global warming, Municipal Solid Waste: Physical, chemical and biological properties, Waste Collection and, Transfer stations, Waste minimization and recycling of municipal waste, Segregation of waste, Size Reduction, Managing Waste. Status of technologies for generation of Energy from Waste Treatment and Disposal Aerobic composting, incineration, Furnace type and design, Medical waste /Pharmaceutical waste treatment Technologies, incineration, Environmental impacts, Measures to mitigate environmental effects due to incineration.

UNIT - II

Land Fill method of Solid waste disposal Land fill classification, Types, methods and Sitting consideration, Layout and preliminary design of landfills: Composition, characteristics, generation, Movement and control of landfill leach ate and gases, Environmental monitoring system for land fill gases.

UNIT - III

Energy Generation from Waste Bio-chemical Conversion: Sources of energy generation, anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, Industrial waste, agro residues, Anaerobic Digestion.

UNIT - IV

Biogas production, Land fill gas generation and utilization, Thermo-chemical conversion: Sources of energy generation, Gasification of waste using Gasifiers, Briquetting, Utilization and advantages of briquetting, Environmental benefits of Bio-chemical and Thermo- chemical conversion.

UNIT - V

E-waste: e-waste in the global context – Growth of Electrical and Electronics Industry in India – Environmental concerns and health hazards – Recycling e-waste: a thriving economy of the unorganized sector – Global trade in hazardous waste – impact of hazardous e-waste in India. Management of e-waste: e-waste legislation, Government regulations on e-waste management – International experience – need for stringent health safeguards and environmental protection laws of India.

TEXT BOOKS:

- 1. Nicholas P. Cheremisinoff. Handbook of Solid Waste Management and Waste Minimization Technologies. An Imprint of Elsevier, New Delhi (2003).
- P. Aarne Vesilind, William A. Worrell and Debra R. Reinhart. Solid Waste Engineering. Thomson Asia Pte Ltd. Singapore (2002)
- 3. M. Dutta , B. P. Parida, B. K. Guha and T. R. Surkrishnan. Industrial Solid Waste Management and Landfilling practice. Narosa Publishing House, New Delhi (1999).

- 4. "E-waste in India: Research unit, Rajya Sabha Secretariat, New Delhi, June 2011"
- 5. Amalendu Bagchi. Design, construction and Monitoring of Landfills. John Wiley and Sons. New York. (1994)
- 6. M. L. Davis and D. A. Cornwell. Introduction to environmental engineering. Mc Graw Hill International Edition, Singapore (2008)
- 7. C. S. Rao. Environmental Pollution Control Engineering. Wiley Eastern Ltd. New Delhi (1995)
- 8. S. K. Agarwal. Industrial Environment Assessment and Strategy. APH Publishing Corporation. New Delhi (!996)
- 9. Sofer, Samir S. (ed.), Zaborsky, R. (ed.), "Biomass Conversion Processes for Energy and Fuels", New York, Plenum Press, 1981
- 10. Hagerty, D.Joseph; Pavoni, Joseph L; Heer, John E., "Solid Waste Management", New York, Van Nostrand, 1973
- 11. George Tchobanoglous, Hilary Theisen and Samuel Vigil Prsl: Tchobanoglous, George Theisen, Hillary Vigil, Samuel, "Integrated Solid Waste management: Engineering Principles and Management issues", New York, McGraw Hill, 1993.

REFERENCES:

- 1. C Parker and T Roberts (Ed), Energy from Waste An Evaluation of Conversion Technologies, Elsevier Applied Science, London, 1985
- KL Shah, Basics of Solid and Hazardous Waste Management Technology, Prentice Hall, 2000 3. M Datta, Waste Disposal in Engineered Landfills, Narosa Publishing House, 1997
- 3. G Rich et.al, Hazardous Waste Management Technology, Podvan Publishers, 1987
- 4. AD Bhide, BB Sundaresan, Solid Waste Management in Developing Countries, INSDOC, New Delhi,1983 FUEL CELL AND

5. Google books:

- (i) e-waste Management: From waste to Resource Klaus Hieronymi, Ramzy Kahnat, Eric williams
 - Tech. & Engg.-2013(Publisher: Earthscan 2013).
- (ii) What is the impact of E-waste: Tamara Thompson
- (iii) E-waste poses a Health Hazard: Sairudeen Pattazhy

6. Weblinks :

www.unep.org www.routledge.com www.amazon.com www.bookdepository.com www.ecoactiv.com

ELECTRICAL AND ELECTRONICS ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

DISTRIBUTED GENERATION AND MICROGRID (Open Elective - II)

Course Objectives

- To illustrate the concept of distributed generation
- To analyze the impact of grid integration.
- To study concept of Micro grid and its configuration
- To find optimal size, placement and control aspects of DGs

Course Outcomes: Upon the Completion of the course student will be able to

- Find the size and optimal placement DG
- Analyze the impact of grid integration and control aspects of DGs
- Model and analyze a micro grid taking into consideration the planning and operational issues of the DGs to be connected in the system
- Describe the technical impacts of DGs in power systems

UNIT - I

Need for distributed generation - Renewable sources in distributed generation - Current scenario in distributed generation - Planning of DGs – Siting and sizing of DGs – Optimal placement of DG sources in distribution systems.

UNIT - II

Grid integration of DGs – Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units - Energy storage elements - Batteries, ultra-capacitors, flywheels.

UNIT - III

Technical impacts of DGs – Transmission systems, Distribution systems, De-regulation – Impact of DGs upon protective relaying – Impact of DGs upon transient and dynamic stability of existing distribution systems.

UNIT-IV

Economic and control aspects of DGs – Market facts, issues and challenges - Limitations of DGs - Voltage control techniques, Reactive power control, Harmonics, Power quality issues - Reliability of DG based systems – Steady state and Dynamic analysis.

UNIT - V

Introduction to micro-grids – Types of micro-grids – Autonomous and non-autonomous grids – Sizing of micro-grids - Modeling & analysis - Micro-grids with multiple DGs – Micro-grids with power electronic interfacing units - Transients in micro-grids - Protection of micro-grids – Case studies.

TEXT BOOKS:

- 1. H. Lee Willis, Walter G. Scott, 'Distributed Power Generation Planning and Evaluation', Marcel Decker Press, 2000.
- 2. M.Godoy Simoes, Felix A.Farret, 'Renewable Energy Systems Design and Analysis with Induction Generators', CRC press.
- 3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.
- 4. F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.
- 5. Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson, 'Facility Microgrids', General Electric Global Research Center, Niskayuna, New York, Subcontract report, May 2005.

ELECTRICAL AND ELECTRONICS ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

RELIABILITY ENGINEERING (Open Elective – II)

Course Objectives:

- To comprehend the concept of Reliability and Unreliability
- Derive the expressions for probability of failure, Expected value and standard deviation of Binominal distribution, Poisson distribution, normal distribution and weibull distributions.
- Formulating expressions for Reliability analysis of series-parallel and Non-series parallel systems
- Deriving expressions for Time dependent and Limiting State Probabilities using Markov models.

Course Outcomes: Upon the completion of this course, the student will be able to

- Apply fundamental knowledge of Reliability to modeling and analysis of seriesparallel and Non-series parallel systems.
- Solve some practical problems related with Generation, Transmission and Utilization of Electrical Energy.
- Understand or become aware of various failures, causes of failures and remedies for failures in practical systems.

UNIT – I

Rules for combining probabilities of events, Definition of Reliability. Significance of the terms appearing in the definition. Probability distributions: Random variables, probability density and distribution functions. Mathematical expectation, Binominal distribution, Poisson distribution, normal distribution, weibull distribution.

UNIT - II

Hazard rate, derivation of the reliability function in terms of the hazard rate. Failures: Causes of failures, types of failures (early failures, chance failures and wear-out failures). Bath tub curve. Preventive and corrective maintenance. Modes of failure. Measures of reliability: mean time to failure and mean time between failures.

UNIT - III

Classification of engineering systems: series, parallel and series-parallel systems- Expressions for the reliability of the basic configurations.

Reliability evaluation of Non-series-parallel configurations: Decomposition, Path based and cutest based methods, Deduction of the Paths and cutsets from Event tree.

UNIT - IV

Discrete Markov Chains: General modeling concepts, stochastic transitional probability matrix, time dependent probability evaluation and limiting state probability evaluation of one component repairable model. Absorbing states.

Continuous Markov Processes: Modeling concepts, State space diagrams, Stochastic Transitional Probability Matrix, Evaluating time dependent and limiting state Probabilities of one component repairable model. Evaluation of Limiting state probabilities of two component repairable model.

UNIT - V

Approximate system Reliability analysis of Series systems, parallel systems with two and more than two components, Network reduction techniques. Minimal cutest/failure mode approach.

TEXT BOOKS:

- 1. "Reliability evaluation of Engineering systems", Roy Billinton and Ronald N Allan, BS Publications.
- 2. "Reliability Engineering", Elsayed A. Elsayed, Prentice Hall Publications.

- "Reliability Engineering: Theory and Practice", By Alessandro Birolini, Springer Publications.
 "An Introduction to Reliability and Maintainability Engineering", Charles Ebeling, TMH Publications.
 "Reliability Engineering", E. Balaguruswamy, TMH Publications.

MECHANICAL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ENGINEERING RESEARCH METHODOLOGY (Open Elective – II)

UNIT - I

Research Methodology: Objectives and Motivation of Research, Types of Research, Research Approaches, Significance of Research, Research Methods verses Methodology, Research and Scientific Method, Important of Research Methodology, Research Process, Criteria of Good Research, Problems Encountered by Researchers in India, Benefits to the society in general.

Defining the Research Problem: Definition of Research Problem, Problem Formulation, Necessity of Defining the Problem, Technique involved in Defining a Problem.

UNIT - II

Literature Survey: Importance of Literature Survey, Sources of Information, Assessment of Quality of Journals and Articles, Information through Internet. **Literature Review**: Need of Review, Guidelines for Review, Record of Research Review.

UNIT - III

Research Design: Meaning of Research Design, Need of Research Design, Feature of a Good Design Important Concepts Related to Research Design, Different Research Designs, Basic Principles of Experimental Design, Developing a Research Plan, Design of Experimental Set-up, Use of Standards and Codes.

UNIT - IV

Data Collection: Collection of primary data, Secondary data, Data organization, Methods of data grouping, Diagrammatic representation of data, Graphic representation of data. Sample Design, Need for sampling, some important sampling definitions, Estimation of population, Role of Statistics for Data Analysis, Parametric V/s Non Parametric methods, Descriptive Statistics, Measures of central tendency and Dispersion, Hypothesis testing, Use of Statistical software.

Data Analysis: Deterministic and random data, Uncertainty analysis, Tests for significance: Chisquare, student's t-test, Regression modeling, Direct and Interaction effects, ANOVA, F-test, Time Series analysis, Autocorrelation and Autoregressive modeling.

UNIT - V

Research Report Writing: Format of the Research report, Synopsis, Dissertation, Thesis its Differentiation, References/Bibliography/Webliography, Technical paper writing/Journal report writing, making presentation, Use of visual aids. **Research Proposal Preparation**: Writing a Research Proposal and Research Report, Writing Research Grant Proposal.

- 1. C.R Kothari, Research Methodology, Methods & Technique; New Age International Publishers, 2004
- 2. R. Ganesan, Research Methodology for Engineers, MJP Publishers, 2011
- 3. Ratan Khananabis and Suvasis Saha, Research Methodology, Universities Press, Hyderabad, 2015.
- 4. Y. P. Agarwal, Statistical Methods: Concepts, Application and Computation, Sterling Publs., Pvt., Ltd., New Delhi, 2004
- 5. Vijay Upagade and Aravind Shende, Research Methodology, S. Chand & Company Ltd., New Delhi, 2009
- 6. G. Nageswara Rao, Research Methodology and Quantitative methods, BS Publications, Hyderabad, 2012.
- 7. Naval Bajjai "Business Research Methods" Pearson 2011.
- 8. Prahalad Mishra " Business Research Methods " Oxford 2016

COMPUTER SCIENCE AND ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

MACHINE LEARNING (Open Elective - II)

Prerequisites:

- Data Structures
- Knowledge on statistical methods

Course Objectives:

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes:

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system Perspectives and issues in machine learning

Concept learning and the general to specific ordering – Introduction, A concept learning task, concept learning as search, Find-S: Finding a Maximally Specific Hypothesis, Version Spaces and the Candidate Elimination algorithm, Remarks on Version Spaces and Candidate Elimination, Inductive Bias.

Decision Tree Learning – Introduction, Decision Tree Representation, Appropriate Problems for Decision Tree Learning, The Basic Decision Tree Learning Algorithm Hypothesis Space Search in Decision Tree Learning, Inductive Bias in Decision Tree Learning, Issues in Decision Tree Learning.

UNIT - II

Artificial Neural Networks Introduction, Neural Network Representation, Appropriate Problems for Neural Network Learning, Perceptions, Multilayer Networks and the Back propagation Algorithm. Discussion on the Back Propagation Algorithm, An illustrative Example: Face Recognition

Evaluation Hypotheses – Motivation, Estimation Hypothesis Accuracy, Basics of Sampling Theory, A General Approach for Deriving Confidence Intervals, Difference in Error of Two Hypotheses, Comparing Learning Algorithms.

UNIT - III

Bayesian learning - Introduction, Bayes Theorem, Bayes Theorem and Concept Learning Maximum Likelihood and Least Squared Error Hypotheses, Maximum Likelihood Hypotheses for Predicting Probabilities, Minimum Description Length Principle, Bayes Optimal Classifier, Gibs Algorithm, Naïve Bayes Classifier, An Example: Learning to Classify Text, Bayesian Belief Networks, EM Algorithm.

Computational Learning Theory – Introduction, Probably Learning an Approximately Correct Hypothesis, Sample Complexity for Finite Hypothesis Space, Sample Complexity for Infinite Hypothesis Spaces, The Mistake Bound Model of Learning.

Instance-Based Learning – Introduction, k-Nearest Neighbor Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning.

UNIT - IV

Pattern Comparison Techniques, Temporal patterns, Dynamic Time Warping Methods, Clustering, Codebook Generation, Vector Quantization

Pattern Classification: Introduction to HMMS, Training and Testing of Discrete Hidden Markov Models and Continuous Hidden Markov Models, Viterbi Algorithm, Different Case Studies in Speech recognition and Image Processing

UNIT - V

Analytical Learning – Introduction, Learning with Perfect Domain Theories : PROLOG-EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operations.

Combining Inductive and Analytical Learning – Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis.

TEXT BOOKS:

- 1. Machine Learning Tom M. Mitchell,- MGH
- 2. Fundamentals of Speech Recognition By Lawrence Rabiner and Biing Hwang Juang.

REFERENCE BOOK:

1. Machine Learning : An Algorithmic Perspective, Stephen Marsland, Taylor & Francis